ByRDiE: Byzantine-resilient distributed coordinate descent for decentralized learning
نویسندگان
چکیده
Distributed machine learning algorithms enable processing of datasets that are distributed over a network without gathering the data at a centralized location. While efficient distributed algorithms have been developed under the assumption of faultless networks, failures that can render these algorithms nonfunctional indeed happen in the real world. This paper focuses on the problem of Byzantine failures, which are the hardest to safeguard against in distributed algorithms. While Byzantine fault tolerance has a rich history, existing work does not translate into efficient and practical algorithms for high-dimensional distributed learning tasks. In this paper, two variants of an algorithm termed Byzantine-resilient distributed coordinate descent (ByRDiE) are developed and analyzed that solve distributed learning problems in the presence of Byzantine failures. Theoretical analysis as well as numerical experiments presented in the paper highlight the usefulness of ByRDiE for high-dimensional distributed learning in the presence of Byzantine failures.
منابع مشابه
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates
In large-scale distributed learning, security issues have become increasingly important. Particularly in a decentralized environment, some computing units may behave abnormally, or even exhibit Byzantine failures—arbitrary and potentially adversarial behavior. In this paper, we develop distributed learning algorithms that are provably robust against such failures, with a focus on achieving opti...
متن کاملThe Hidden Vulnerability of Distributed Learning in Byzantium
While machine learning is going through an era of celebrated success, concerns have been raised about the vulnerability of its backbone: stochastic gradient descent (SGD). Recent approaches have been proposed to ensure the robustness of distributed SGD against adversarial (Byzantine) workers sending poisoned gradients during the training phase. Some of these approaches have been proven Byzantin...
متن کاملAsynchronous Byzantine Machine Learning
Asynchronous distributed machine learning solutions have proven very effective so far, but always assuming perfectly functioning workers. In practice, some of the workers can however exhibit Byzantine behavior, caused by hardware failures, software bugs, corrupt data, or even malicious attacks. We introduce Kardam, the first distributed asynchronous stochastic gradient descent (SGD) algorithm t...
متن کاملBrief Announcement: Byzantine-Tolerant Machine Learning
We report on Krum, the rst provably Byzantine-tolerant aggregation rule for distributed Stochastic Gradient Descent (SGD). Krum guarantees the convergence of SGD even in a distributed setting where (asymptotically) up to half of the workers can be malicious adversaries trying to attack the learning system.
متن کاملByzantine-Tolerant Machine Learning
The growth of data, the need for scalability and the complexity of models used in modern machine learning calls for distributed implementations. Yet, as of today, distributed machine learning frameworks have largely ignored the possibility of arbitrary (i.e., Byzantine) failures. In this paper, we study the robustness to Byzantine failures at the fundamental level of stochastic gradient descent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.08155 شماره
صفحات -
تاریخ انتشار 2017